Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L.

Identifieur interne : 002E02 ( Main/Exploration ); précédent : 002E01; suivant : 002E03

Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L.

Auteurs : Stephen R. Keller [États-Unis] ; Nicholas Levsen ; P R K. Ingvarsson ; Matthew S. Olson ; Peter Tiffin

Source :

RBID : pubmed:21624997

Descripteurs français

English descriptors

Abstract

Molecular studies of adaptive evolution often focus on detecting selective sweeps driven by positive selection on a species-wide scale; however, much adaptation is local, particularly of ecologically important traits. Here, we look for evidence of range-wide and local adaptation at candidate genes for adaptive phenology in balsam poplar, Populus balsamifera, a widespread forest tree whose range extends across environmental gradients of photoperiod and growing season length. We examined nucleotide diversity of 27 poplar homologs of the flowering-time network-a group of genes that control plant developmental phenology through interactions with environmental cues such as photoperiod and temperature. Only one gene, ZTL2, showed evidence of reduced diversity and an excess of fixed replacement sites, consistent with a species-wide selective sweep. Two other genes, LFY and FRI, harbored high levels of nucleotide diversity and exhibited elevated differentiation between northern and southern accessions, suggesting local adaptation along a latitudinal gradient. Interestingly, FRI has also been identified as a target of local selection between northern and southern accessions of Arabidopsis thaliana, indicating that this gene may be commonly involved in ecological adaptation in distantly related species. Our findings suggest an important role for local selection shaping molecular diversity and reveal limitations of inferring molecular adaptation from analyses designed only to detect species-wide selective sweeps.

DOI: 10.1534/genetics.111.128041
PubMed: 21624997
PubMed Central: PMC3176098


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L.</title>
<author>
<name sortKey="Keller, Stephen R" sort="Keller, Stephen R" uniqKey="Keller S" first="Stephen R" last="Keller">Stephen R. Keller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108</wicri:regionArea>
<wicri:noRegion>Minnesota 55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Levsen, Nicholas" sort="Levsen, Nicholas" uniqKey="Levsen N" first="Nicholas" last="Levsen">Nicholas Levsen</name>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
</author>
<author>
<name sortKey="Olson, Matthew S" sort="Olson, Matthew S" uniqKey="Olson M" first="Matthew S" last="Olson">Matthew S. Olson</name>
</author>
<author>
<name sortKey="Tiffin, Peter" sort="Tiffin, Peter" uniqKey="Tiffin P" first="Peter" last="Tiffin">Peter Tiffin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21624997</idno>
<idno type="pmid">21624997</idno>
<idno type="doi">10.1534/genetics.111.128041</idno>
<idno type="pmc">PMC3176098</idno>
<idno type="wicri:Area/Main/Corpus">002D97</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D97</idno>
<idno type="wicri:Area/Main/Curation">002D97</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002D97</idno>
<idno type="wicri:Area/Main/Exploration">002D97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L.</title>
<author>
<name sortKey="Keller, Stephen R" sort="Keller, Stephen R" uniqKey="Keller S" first="Stephen R" last="Keller">Stephen R. Keller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108</wicri:regionArea>
<wicri:noRegion>Minnesota 55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Levsen, Nicholas" sort="Levsen, Nicholas" uniqKey="Levsen N" first="Nicholas" last="Levsen">Nicholas Levsen</name>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
</author>
<author>
<name sortKey="Olson, Matthew S" sort="Olson, Matthew S" uniqKey="Olson M" first="Matthew S" last="Olson">Matthew S. Olson</name>
</author>
<author>
<name sortKey="Tiffin, Peter" sort="Tiffin, Peter" uniqKey="Tiffin P" first="Peter" last="Tiffin">Peter Tiffin</name>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Biological (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Gene Frequency (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Variation (genetics)</term>
<term>Models, Genetic (MeSH)</term>
<term>Nucleotides (chemistry)</term>
<term>Phenotype (MeSH)</term>
<term>Populus (genetics)</term>
<term>Selection, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation biologique (MeSH)</term>
<term>Environnement (MeSH)</term>
<term>Fréquence d'allèle (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Nucléotides (composition chimique)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (génétique)</term>
<term>Simulation numérique (MeSH)</term>
<term>Sélection génétique (MeSH)</term>
<term>Variation génétique (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Nucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Nucléotides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genetic Variation</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Computer Simulation</term>
<term>Environment</term>
<term>Gene Frequency</term>
<term>Genes, Plant</term>
<term>Models, Genetic</term>
<term>Phenotype</term>
<term>Selection, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation biologique</term>
<term>Environnement</term>
<term>Fréquence d'allèle</term>
<term>Gènes de plante</term>
<term>Modèles génétiques</term>
<term>Phénotype</term>
<term>Simulation numérique</term>
<term>Sélection génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Molecular studies of adaptive evolution often focus on detecting selective sweeps driven by positive selection on a species-wide scale; however, much adaptation is local, particularly of ecologically important traits. Here, we look for evidence of range-wide and local adaptation at candidate genes for adaptive phenology in balsam poplar, Populus balsamifera, a widespread forest tree whose range extends across environmental gradients of photoperiod and growing season length. We examined nucleotide diversity of 27 poplar homologs of the flowering-time network-a group of genes that control plant developmental phenology through interactions with environmental cues such as photoperiod and temperature. Only one gene, ZTL2, showed evidence of reduced diversity and an excess of fixed replacement sites, consistent with a species-wide selective sweep. Two other genes, LFY and FRI, harbored high levels of nucleotide diversity and exhibited elevated differentiation between northern and southern accessions, suggesting local adaptation along a latitudinal gradient. Interestingly, FRI has also been identified as a target of local selection between northern and southern accessions of Arabidopsis thaliana, indicating that this gene may be commonly involved in ecological adaptation in distantly related species. Our findings suggest an important role for local selection shaping molecular diversity and reveal limitations of inferring molecular adaptation from analyses designed only to detect species-wide selective sweeps.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21624997</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>188</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2011</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L.</ArticleTitle>
<Pagination>
<MedlinePgn>941-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.111.128041</ELocationID>
<Abstract>
<AbstractText>Molecular studies of adaptive evolution often focus on detecting selective sweeps driven by positive selection on a species-wide scale; however, much adaptation is local, particularly of ecologically important traits. Here, we look for evidence of range-wide and local adaptation at candidate genes for adaptive phenology in balsam poplar, Populus balsamifera, a widespread forest tree whose range extends across environmental gradients of photoperiod and growing season length. We examined nucleotide diversity of 27 poplar homologs of the flowering-time network-a group of genes that control plant developmental phenology through interactions with environmental cues such as photoperiod and temperature. Only one gene, ZTL2, showed evidence of reduced diversity and an excess of fixed replacement sites, consistent with a species-wide selective sweep. Two other genes, LFY and FRI, harbored high levels of nucleotide diversity and exhibited elevated differentiation between northern and southern accessions, suggesting local adaptation along a latitudinal gradient. Interestingly, FRI has also been identified as a target of local selection between northern and southern accessions of Arabidopsis thaliana, indicating that this gene may be commonly involved in ecological adaptation in distantly related species. Our findings suggest an important role for local selection shaping molecular diversity and reveal limitations of inferring molecular adaptation from analyses designed only to detect species-wide selective sweeps.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Keller</LastName>
<ForeName>Stephen R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Levsen</LastName>
<ForeName>Nicholas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ingvarsson</LastName>
<ForeName>Pär K</ForeName>
<Initials>PK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Olson</LastName>
<ForeName>Matthew S</ForeName>
<Initials>MS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tiffin</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009711">Nucleotides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000220" MajorTopicYN="N">Adaptation, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="Y">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005787" MajorTopicYN="N">Gene Frequency</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009711" MajorTopicYN="N">Nucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="Y">Selection, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21624997</ArticleId>
<ArticleId IdType="pii">genetics.111.128041</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.111.128041</ArticleId>
<ArticleId IdType="pmc">PMC3176098</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2513255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Oct 13;290(5490):344-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11030654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2004 Aug;58(8):1748-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15446427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):160-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Jul;23(7):347-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 1974 Feb;23(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4407212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 Apr;20(7):1463-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21309875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Mar;163(3):1201-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4712-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17655753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Sep;91(9):1398-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Apr 28;101(3):319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10847686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Nov;26(11):2475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Feb;154(2):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Apr;160(4):1641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11973317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(3):517-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19154317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Apr;11(2):110-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18255332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Dec;162(4):2025-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12524368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 May;18(9):2039-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19317844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Apr 4;416(6880):531-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Dec;61(12):2849-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2009;10:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19583871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S111-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 20;437(7062):1153-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Feb;16(2):266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10028292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Mar;27(3):650-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 May;6(5):e1000940</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Mar;20(3):393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20086244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Nov;186(3):1033-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 20;449(7160):356-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17704763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Aug;19(8):1261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Jul;5(7):e171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17579516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Nov;14(13):4181-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Aug;27(8):1822-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20299543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Mar;19(6):1212-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20163548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Feb 6;323(5915):746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Apr;178(4):2217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Jul;179(3):1713-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Jun;182(2):603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Aug;27(8):1813-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Mar;42(3):260-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20101244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jul;155(3):1405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(2):313-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 May;19(5):826-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19307593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Sep;183(1):325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19581446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2008 Sep;62(9):2215-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18564374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2004 Apr;26(4):363-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15057934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2501-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15670-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15505218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):526-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20122131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 May;22(3):235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 1;25(11):1451-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Feb;4(2):e32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Mar;172(3):1845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2008 Dec;62(12):3069-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2006 Apr;167(4):481-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 12;296(5566):285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11951029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 May;15(5):538-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Jan;98(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2005;39:197-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16285858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2005 Mar;76(3):449-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15700229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1821-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2001 Apr;68(4):978-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11254454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Aug;183(3):740-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19566812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 May;19(5):838-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1987 May;116(1):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3110004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 1997 Oct;70(2):155-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9449192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Jan;27(1):73-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19744997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Feb;18(2):337-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11847089</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<name sortKey="Levsen, Nicholas" sort="Levsen, Nicholas" uniqKey="Levsen N" first="Nicholas" last="Levsen">Nicholas Levsen</name>
<name sortKey="Olson, Matthew S" sort="Olson, Matthew S" uniqKey="Olson M" first="Matthew S" last="Olson">Matthew S. Olson</name>
<name sortKey="Tiffin, Peter" sort="Tiffin, Peter" uniqKey="Tiffin P" first="Peter" last="Tiffin">Peter Tiffin</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Keller, Stephen R" sort="Keller, Stephen R" uniqKey="Keller S" first="Stephen R" last="Keller">Stephen R. Keller</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21624997
   |texte=   Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21624997" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020